3.33 \(\int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=92 \[ -\frac{a^3 \cos ^3(c+d x)}{3 d}+\frac{3 a^3 \cos (c+d x)}{d}-\frac{a^3 \cot (c+d x)}{d}+\frac{3 a^3 \sin (c+d x) \cos (c+d x)}{2 d}-\frac{3 a^3 \tanh ^{-1}(\cos (c+d x))}{d}+\frac{a^3 x}{2} \]

[Out]

(a^3*x)/2 - (3*a^3*ArcTanh[Cos[c + d*x]])/d + (3*a^3*Cos[c + d*x])/d - (a^3*Cos[c + d*x]^3)/(3*d) - (a^3*Cot[c
 + d*x])/d + (3*a^3*Cos[c + d*x]*Sin[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.136857, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {2709, 3770, 3767, 8, 2638, 2635, 2633} \[ -\frac{a^3 \cos ^3(c+d x)}{3 d}+\frac{3 a^3 \cos (c+d x)}{d}-\frac{a^3 \cot (c+d x)}{d}+\frac{3 a^3 \sin (c+d x) \cos (c+d x)}{2 d}-\frac{3 a^3 \tanh ^{-1}(\cos (c+d x))}{d}+\frac{a^3 x}{2} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*(a + a*Sin[c + d*x])^3,x]

[Out]

(a^3*x)/2 - (3*a^3*ArcTanh[Cos[c + d*x]])/d + (3*a^3*Cos[c + d*x])/d - (a^3*Cos[c + d*x]^3)/(3*d) - (a^3*Cot[c
 + d*x])/d + (3*a^3*Cos[c + d*x]*Sin[c + d*x])/(2*d)

Rule 2709

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Dist[a^p, Int[Expan
dIntegrand[(Sin[e + f*x]^p*(a + b*Sin[e + f*x])^(m - p/2))/(a - b*Sin[e + f*x])^(p/2), x], x], x] /; FreeQ[{a,
 b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p/2] && (LtQ[p, 0] || GtQ[m - p/2, 0])

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rubi steps

\begin{align*} \int \cot ^2(c+d x) (a+a \sin (c+d x))^3 \, dx &=\frac{\int \left (2 a^5+3 a^5 \csc (c+d x)+a^5 \csc ^2(c+d x)-2 a^5 \sin (c+d x)-3 a^5 \sin ^2(c+d x)-a^5 \sin ^3(c+d x)\right ) \, dx}{a^2}\\ &=2 a^3 x+a^3 \int \csc ^2(c+d x) \, dx-a^3 \int \sin ^3(c+d x) \, dx-\left (2 a^3\right ) \int \sin (c+d x) \, dx+\left (3 a^3\right ) \int \csc (c+d x) \, dx-\left (3 a^3\right ) \int \sin ^2(c+d x) \, dx\\ &=2 a^3 x-\frac{3 a^3 \tanh ^{-1}(\cos (c+d x))}{d}+\frac{2 a^3 \cos (c+d x)}{d}+\frac{3 a^3 \cos (c+d x) \sin (c+d x)}{2 d}-\frac{1}{2} \left (3 a^3\right ) \int 1 \, dx-\frac{a^3 \operatorname{Subst}(\int 1 \, dx,x,\cot (c+d x))}{d}+\frac{a^3 \operatorname{Subst}\left (\int \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{d}\\ &=\frac{a^3 x}{2}-\frac{3 a^3 \tanh ^{-1}(\cos (c+d x))}{d}+\frac{3 a^3 \cos (c+d x)}{d}-\frac{a^3 \cos ^3(c+d x)}{3 d}-\frac{a^3 \cot (c+d x)}{d}+\frac{3 a^3 \cos (c+d x) \sin (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 1.06475, size = 106, normalized size = 1.15 \[ -\frac{a^3 \csc \left (\frac{1}{2} (c+d x)\right ) \sec \left (\frac{1}{2} (c+d x)\right ) \left ((15-66 \sin (c+d x)) \cos (c+d x)+(2 \sin (c+d x)+9) \cos (3 (c+d x))-12 \sin (c+d x) \left (6 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-6 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+c+d x\right )\right )}{48 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*(a + a*Sin[c + d*x])^3,x]

[Out]

-(a^3*Csc[(c + d*x)/2]*Sec[(c + d*x)/2]*(Cos[c + d*x]*(15 - 66*Sin[c + d*x]) - 12*(c + d*x - 6*Log[Cos[(c + d*
x)/2]] + 6*Log[Sin[(c + d*x)/2]])*Sin[c + d*x] + Cos[3*(c + d*x)]*(9 + 2*Sin[c + d*x])))/(48*d)

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 105, normalized size = 1.1 \begin{align*} -{\frac{{a}^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{3\,d}}+{\frac{3\,{a}^{3}\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2\,d}}+{\frac{{a}^{3}x}{2}}+{\frac{{a}^{3}c}{2\,d}}+3\,{\frac{{a}^{3}\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{d}}+3\,{\frac{{a}^{3}\cos \left ( dx+c \right ) }{d}}-{\frac{{a}^{3}\cot \left ( dx+c \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+a*sin(d*x+c))^3,x)

[Out]

-1/3*a^3*cos(d*x+c)^3/d+3/2*a^3*cos(d*x+c)*sin(d*x+c)/d+1/2*a^3*x+1/2/d*a^3*c+3/d*a^3*ln(csc(d*x+c)-cot(d*x+c)
)+3*a^3*cos(d*x+c)/d-a^3*cot(d*x+c)/d

________________________________________________________________________________________

Maxima [A]  time = 1.63734, size = 126, normalized size = 1.37 \begin{align*} -\frac{4 \, a^{3} \cos \left (d x + c\right )^{3} - 9 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{3} + 12 \,{\left (d x + c + \frac{1}{\tan \left (d x + c\right )}\right )} a^{3} - 18 \, a^{3}{\left (2 \, \cos \left (d x + c\right ) - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/12*(4*a^3*cos(d*x + c)^3 - 9*(2*d*x + 2*c + sin(2*d*x + 2*c))*a^3 + 12*(d*x + c + 1/tan(d*x + c))*a^3 - 18*
a^3*(2*cos(d*x + c) - log(cos(d*x + c) + 1) + log(cos(d*x + c) - 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.56613, size = 321, normalized size = 3.49 \begin{align*} -\frac{9 \, a^{3} \cos \left (d x + c\right )^{3} + 9 \, a^{3} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - 9 \, a^{3} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - 3 \, a^{3} \cos \left (d x + c\right ) +{\left (2 \, a^{3} \cos \left (d x + c\right )^{3} - 3 \, a^{3} d x - 18 \, a^{3} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, d \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/6*(9*a^3*cos(d*x + c)^3 + 9*a^3*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 9*a^3*log(-1/2*cos(d*x + c) + 1/
2)*sin(d*x + c) - 3*a^3*cos(d*x + c) + (2*a^3*cos(d*x + c)^3 - 3*a^3*d*x - 18*a^3*cos(d*x + c))*sin(d*x + c))/
(d*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{3} \left (\int 3 \sin{\left (c + d x \right )} \cot ^{2}{\left (c + d x \right )}\, dx + \int 3 \sin ^{2}{\left (c + d x \right )} \cot ^{2}{\left (c + d x \right )}\, dx + \int \sin ^{3}{\left (c + d x \right )} \cot ^{2}{\left (c + d x \right )}\, dx + \int \cot ^{2}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+a*sin(d*x+c))**3,x)

[Out]

a**3*(Integral(3*sin(c + d*x)*cot(c + d*x)**2, x) + Integral(3*sin(c + d*x)**2*cot(c + d*x)**2, x) + Integral(
sin(c + d*x)**3*cot(c + d*x)**2, x) + Integral(cot(c + d*x)**2, x))

________________________________________________________________________________________

Giac [A]  time = 2.05943, size = 219, normalized size = 2.38 \begin{align*} \frac{3 \,{\left (d x + c\right )} a^{3} + 18 \, a^{3} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) + 3 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{3 \,{\left (6 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a^{3}\right )}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )} - \frac{2 \,{\left (9 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 12 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 36 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 9 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 16 \, a^{3}\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(3*(d*x + c)*a^3 + 18*a^3*log(abs(tan(1/2*d*x + 1/2*c))) + 3*a^3*tan(1/2*d*x + 1/2*c) - 3*(6*a^3*tan(1/2*d
*x + 1/2*c) + a^3)/tan(1/2*d*x + 1/2*c) - 2*(9*a^3*tan(1/2*d*x + 1/2*c)^5 - 12*a^3*tan(1/2*d*x + 1/2*c)^4 - 36
*a^3*tan(1/2*d*x + 1/2*c)^2 - 9*a^3*tan(1/2*d*x + 1/2*c) - 16*a^3)/(tan(1/2*d*x + 1/2*c)^2 + 1)^3)/d